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Abstract-This paper is concerned with the axisymmetric torsion of a finite (long) cylindrical bar
which is partially embedded in, a non-homogeneous transversely isotropic elastic layer underlaid by
a rigid base. The non-homogeneity of the elastic layer is represented by both linear and non-linear
variations of shear moduli with depth. The bar-elastic layer system is decomposed to a real bar and
an elastic layer with a cylindrical cavity identical to the embedded bar, instead of adopting the
conventional fictitious bar-extended elastic medium decomposition. The proposed decomposition
allows the imposition of displacement compatibility and traction continuity along the true contact
surface in the analysis. A solution scheme based on a classical variational theorem is presented to
analyse the load transfer problem. The displacement and traction Green's functions of the non­
homogeneous elastic layer are required in the analysis and these are derived explicitly using Hankel
integral transforms. Numerical results are presented to illustrate the effect of non-homogeneity and
transverse isotropy on the torque twist relationship at the top end of the bar and twist angle and
torque transfer curves along the length of the bar.

INTRODUCTION

The boundary-value problem involving a statically loaded elastic cylindrical bar partially
embedded in an elastic medium has useful applications in several branches of engineering.
A review of existing literature reveals that the analytical study of the torsional load transfer
problem has received some attention. Freeman and Keer (1967) and Keer and Freeman
(1970) presented exact analytical formulations for torsion of a finite elastic rod welded to
the free surface of an elastic half-space and that for an infinitely long elastic rod with a
finite protruding length and embedded in a homogeneous isotropic half-space, respectively.
The torsional load transfer problem involving a finite elastic cylinder partially embedded
in a layered elastic half-space has been considered by Karasudhi et al. (1984) by using the
solution approach presented by Muki and Sternberg (1970) for the axial load transfer
problem. A solution was presented (Selvadurai and Rajapakse, 1987) based on the
decomposition proposed by Muki and Sternberg (1970) and a variational method to solve
the torsional load-transfer problem. In addition Poulos (1975) presented an approximate
solution using the finite difference technique and Randolph (1981) analysed the torsional
load transfer problem using a simplified representation of the stress field in the surrounding
half-space.

Load transfer studies available at present are based on the idealization that the sur­
rounding elastic medium is homogeneous or layered and isotropic. However, for appli­
cations in geomechanics such an idealization is contrary to the fact that the shear modulus
of the surrounding medium varies continuously with depth according to the geologic and
loading history of the soil deposit (Wroth et al., 1984). In addition, experimental inves­
tigation of natural soil deposits confirms the presence of anisotropy. The incorporation of
both non-homogeneity and anisotropy into the load transfer analysis would enhance the
practicality of the solution and its usefulness to engineering practice. Furthermore, a
rigorous treatment of non-homogeneity and anisotropy would lead to a proper quanti­
fication of the influence ofthese factors on the solution and serve as the basis for comparison
of approximate schemes (Randolph, 1981) and finite element solutions. In general studies
involving non-homogeneous elastic media are rather limited. The complexity of the problem
is such that only a few boundary-value problems involving surface loading of a non­
homogeneous half-space have been considered (Kassir, 1970; Chuaprasert and Kassir,
1973; Erguven, 1982; Selvadurai et al., 1986).
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Fig. I. Elastic bar embedded in non-homogeneous transversely isotropic elastic layer.

The torsional load transfer problem considered in this study is shown in Fig. I. The
surrounding medium is modelled as a non-homogeneous transversely isotropic elastic layer
of finite thickness overlying a rigid base. The variation of shear moduli with depth is
represented by two types of non-linear functions. In the present study the general solution
for axisymmetric torsional displacement and stresses in a non-homogeneous transversely
isotropic elastic solid is obtained through the application of Hankel integral transform
techniques. The general solution is used to derive displacement and traction Green's func­
tions corresponding to a concentrated ring load in the 8-direction acting in the interior of
the elastic layer. The bar-elastic medium system is decomposed to a real bar and an elastic
layer with a cavity identical to the bar. This decomposition allows the imposition of
displacement compatibility and traction continuity along the true contact surface between
the bar and the surrounding medium.

The displacement of the real bar is represented by an admissible function containing
a set of generalized coordinates which is consistent with the assumed one-dimensional
behaviour. A total potential energy functional is developed for the bar-elastic medium
system in terms of generalized coordinates. The energy functional also involves a relation­
ship between traction and displacement along the surface of the cylindrical cavity in the
elastic layer. This relationship is established with respect to a set of discrete points on
the cavity surface using the derived traction and displacement Green's functions of the
undisturbed elastic layer. A minimization of total potential energy functional results in a
linear simultaneous equation system for determination of generalized coordinates. The
numerical study presented in this paper intends to portray the significance of non-homo­
geneity, transverse isotropy and bar flexibility on the torque-twist relationship at the top
end of the bar and twist angle and torque transfer curves along the length of the bar.

GENERAL SOLUTION AND GREEN'S FUNCTIONS

In the present study the cylindrical polar coordinate system (r, e, z) is adopted with the
z-axis normal to the free surface of the elastic layer as shown in Fig. I. Due to the axially
symmetric nature of the problem under consideration the stresses and displacements are
independent of the 8-coordinate and only the displacement v(r, z) in the e-direction exists.
It should be mentioned here that axially symmetric deformation fields are possible only for
a limited form of anisotropy such as the case of transverse isotropy. The relationship
between the non-zero stress components and displacement v(r, z) is obtained from the
generalized Hooke's law (Lekhnitskii, 1963) as

(I)

where
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(2)

In eqns (I) and (2) Aik, z) denote a modulus of elasticity appearing in the generalized
Hooke's law (Lekhnitskii, 1963). Coefficients A 44 and A 66 could be physically interpreted
as the shear moduli for the planes parallel and perpendicular to the z-axis, respectively. At
this stage it is convenient to non-dimensionalize the entire problem including the coordinate
frame by defining"a" which denotes the radius of the embedded bar as a unit length.

The governing equation for the present class of problems in the absence of body forces
could be expressed as

~ [A 66 (av _ ~)J+ ~ [A 44 avJ+ 2A 66 (av -~) = o.
ar ar r az az r ar r

(3)

For most applications in geomechanics shear moduli of natural soil deposits increase
with depth due to the increase in effective overburden pressure and degree of over­
consolidation. In addition the homogeneous condition could be justified in the radial
direction. Under these assumptions shear moduli A 44 and A 66 are functions of the z­
coordinate only. It is also assumed that the ratio of shear moduli A 44 and A 66 is spatially
independent.

The shear moduli of the surrounding medium is assumed to vary with depth according
to the following functional forms.

or

A 44 (Z) = Jlo ePz

A 66 (Z) = yA 44 (Z), Y > O.

(4a)

(4b)

(4c)

In eqns (4), a = f3 = 0 represents a homogeneous transversely isotropic solid; a> 0
or f3 > 0 represents a situation where shear moduli increase non-linearly with depth;
a < 0 or f3 < 0 represents a situation where shear moduli decrease with depth and a = I
corresponds to an elastic medium with linearly increasing shear moduli. The constant y is
a measure of transverse isotropy and y = I represents an isotropic solid. It is evident that
eqns (4) could represent a variety of practical situations.

The general solution of eqn (3) could be obtained through the application of Hankel
integral transforms. Following Sneddon (1951) the displacement v(r,z) in the O-direction
is taken in the form

v(r, z) = fO F(~, z)J1(~r) d~. (5)

In eqn (5), J} denotes the Bessel function of the first kind and first order. Substitution
of eqn (5) into eqn (3) and considering the appropriate variation of shear modulus as given
by eqn (4a) or (4b) together with eqn (4c) leads to the following general solution for
displacement v(r, z) in the O-direction:

where
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v(r,z) = (m+z)PyPI2lCO {C(~)Ip[(m+z)~yI/2]+DmKp[(m+zgyI/2]}JI(~r) d~

for A 44 (Z) = /lo(1 +mz)" (7)

where

2p= I-a; m= 11m.

In eqns (6) and (7), em and D(~) are arbitrary functions which should be determined
by invoking appropriate boundary and continuity conditions; Ip and Kp in eqn (7) denote
modified Bessel functions of the first and second kind of order p, respectively. For a domain
which extends to infinity in the z-direction in order to satisfy regularity conditions of
displacement and stresses, general solutions represented by eqns (6) and (7) reduce to the
following expressions:

(8)

(9)

In the ensuing section dealing with the variational formulation of the load transfer
problem a relationship between a traction field in the O-direction applied over the surface
of a cylindrical cavity created in the non-homogeneous elastic layer and the corresponding
displacement in the O-direction is required. A discrete version of this relationship in terms
of a set of nodal points located on the cavity surface could be established through dis­
placement and traction Green's functions corresponding to an undisturbed (without a
cavity) non-homogeneous elastic layer. The relevant Green's functions could be derived
by utilizing eqns (1), (6)-(9) and following the procedure similar to that adopted for a
homogeneous medium (Karasudhi et al., 1984; Selvadurai and Rajapakse, 1987). The
displacement Green's functions Goo(r, z; S, z') denoting the displacement in the O-direction
at point (r, z) due to a unit ring load through the point (s, z') is presented explicitly in the
Appendix. The traction Green's function Hoo(r, z; S, z') could be obtained from Goo using
basic relationships in elasticity (Fung, 1965). The relevant expression for H oo in terms of
Goo is given by eqn (AI4) in the Appendix.

VARIATIONAL FORMULATION OF TORSION LOAD TRANSFER PROBLEM

Consider a cylindrical elastic bar with radius a and length h(hla » 1) embedded in a
non-homogeneous transversely isotropic elastic layer overlying a rigid base as shown in
Fig. 1. The bar is perfectly bonded to the surrounding elastic layer along the shaft (r = a,
o~ z ~ h) and the base (z = h, 0 ~ r ~ a). The thickness of the elastic layer is denoted by
H and variation of shear moduli A 44 and A 66 with depth is defined according to eqns (4).
The embedded bar consists of a homogeneous isotropic elastic material the shear modulus
of which is denoted by /lb' The bar which is flushed at the free surface level is subjected
to a torque To at z = 0 and under this loading configuration experiences a rotation cPo at
the top end.

In the present study a novel solution scheme which is based on the decomposition of
the bar-elastic medium system into an elastic medium B with a cylindrical cavity identical
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Fig. 2. Decomposition of bar--elastic layer system: (a) elastic layer with cylindrical cavity B; (b)
real elastic bar B.

to the bar and the real bar B as shown in Fig. 2 is presented to analyse the title problem.
In view of this decomposition, the load transfer problem could be formulated on the basis
of displacement compatibility and traction continuity on the true contact surface between
the bar and the surrounding medium instead of treating fictitious systems (Karasudhi et
al., 1984; Selvadurai and Rajapakse, 1987). Furthermore, the consideration of anisotropy
of any type in a strict sense does not allow the decomposition originally proposed by Muki
and Sternberg (1970). In the following anslysis Band B are treated using three- and one­
dimensional theory, respectively.

The assumption that the bar is governed by a one-dimensional theory enables the only
non-vanishing displacement Vb in the 8-direction of the real bar to be expressed in the
admissible form

N

vb(r, z) = L bnt/Jn(r, z).
n= I

(10)

In eqn (10), bn could be viewed as a set of generalized coordinates and the number of
terms N to be decided by a convergence study. The functions t/Jn(r, z) may be selected as

(11)

In view of eqns (10) and (11), the strain energy Ub of the elastic bar B can be expressed
as

N N

Ub = L L bnbmDmn
n= I m= 1

(12)

where

1tllb (m-l) (n-l)D = _r'_ (1- -(m+n-2)). m+n..J. 2
mn 4h (m+n-2) e , ..,....

=0 for m+n=2.
(13)

The strain energy UL of the elastic layer B with the cavity could be expressed as

UL = ~1 (u,es,e+uzesze) dV

= ~l TV dS.

(14)
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In egn (14), Ddenotes the displacement on S as given by egn (10). The traction fin
the O-direction on S corresponds to displacement D. In view of egn (l0)

where

Dn = t/Jn(r,z), (r,z)ES.

The traction t could be written as

(I Sa)

(lSb)

(16)

where t n is the traction on S due to the displacement field vn imposed on S.
The solution of the mixed~boundary value problem corresponding to domain fi to

determine t n due to vn imposed on S is not straightforward. In fact it is impossible to obtain
an explicit representation of f n for the Dn given by egn (lSb). The application of integral
representation theorems for an elastic solid (Eringen and Suhubi, 1975) to fi leads to a
relationship between f n and Dn expressed in the form ofan integral equation on S. Therefore,
it is possible to write the following matrix relationship involving values of t n and Dn at a set
of nodal locations selected on S :

(17)

In eqn (17), f nj and Dnj denote traction in the O-direction and displacement in the 0­
direction at node jon S and a total of M nodes is used todiscretize S. The determination
of matrix [K] of size M x M will be discussed in the ensuing section. In view of eqns (14)­
(16), UL can be expressed as

(18)

In eqn (18), A j is the tributary area corresponding to node jon Sand t/Jmj is given by
eqn (11) when applied to nodes.

The total potential energy functional Xfor the bar-elastic layer system can be written
as (Washishu, 1982)

N

X = UL +Vb - To I bnt/Jn(1,O).
n= I

The minimization of eqn (19) with respect to generalized coordinates bn yields

(19)

The numerical solution of eqn (20) for a given bar-elastic layer system results in the
solution for bn (n = l, ... , N). Thereafter eqn (10) could be used to compute the dis­
placement (twist) profile along the bar length. The resultant torque T(z) acting on the bar
at a depth z can be determined from the following equations:

where

N

T(z) = JibJ I bnt/J~(1,z)
n=1

(21)



A torsion load transfer problem for a class of non-homogeneous elastic solids

Fig. 3. Uniform non-homogeneous elastic layer B* used to derive [K].
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•/,1(1 ) = dt/Jn(l,z)
'1'. ,z dz'

7t

J= 2' (22)

It is interesting to note the simplicity of eqns(lO) and (21) which represent expressions for
angle of twist, and torque diffusion along the bar length when compared to corresponding
expressions in Karasudhi et al. (1984) involving complicated integral equations with kernels
consisting of infinite integrals of the Lipschitz-Hankel type (Eason et al., 1955). In addition
to these advantages the compatibility condition employed in the present formulation is
more realistic and the deformation of the real bar is totally consistent with the assumed
one-dimensional behaviour.

TRACTION-DISPLACEMENT RELATIONSHIP ALONG CAVITY SURFACE

The successful implementation of the present formulation depends on the deter­
mination of (K] in eqn (17) which determines f n on S for a specified vn on S. In the present
study, the indirect traction method by Ohsaki (1973) to study the movement of a rigid body
embedded in an elastic half-space is applied to determine (K]. In this method a uniform
non-homogeneous elastic layer B'" without a cavity as shown in Fig. 3 is considered. The
contour S representing the true contact surface is also defined in B.... Interior to S, an
arbitrary surface S* with geometry similar to S is defined. A traction field t: in the 0­
direction is applied on S* such that the displacement in the O-direction on S is equal to V•.
Under this condition the following non-singular integral equation can be established:

v.(r,z) = [ Goo(r,z;s,z')t:(s,z') dS*, (r,z)Es, (S,Z') ES*. (23)Js.
In eqn (23), Goo(r, z; S, z') is the displacement Green's function for B'" which is explicitly

presented by eqns (AI)-(A13) in the Appendix. Alternatively, a discrete representation of
eqn (23) with respect to a set of nodal points on S* and S can be written as

(24)

where

V.i = vn(rio Zi) (rio Zi) E S

-r:j = t:(Sj,zj) (Sj,Zj)ES*

Gij = Goo (rio Zi; Sj' zj)Aj

Aj = Tributary area for node j on S*.
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In general the total number of nodes M* on S* and M on S need not be equal and
eqn (24) could be solved for {.~j} in a least square sense. This leads to

(25)

Since the displacement on Sis vnthe corresponding traction in is given by the following
non-singular integral equation;

Alternatively

where

in(r,z) = r Hee(r,z;s,z').:(s,z') dS*.Js. (26)

(27)

(28)

In eqn (26), Hee(r, z ; s, z') denotes the traction in the O-direction on a plane with unit
normal n through a point (r,z) on S due to a unit ring load in the O-direction through point
(s,z') on S*. Note H ee is related to Gee as given by eqn (AI4) in the Appendix.

In view of eqns (27) and (25)

(29)

Comparison of eqns (l7) and (29) leads to

(30)

Therefore, eqn (30) together with the explicit representations of Green's functions Gee
and Hee given in the Appendix make [K] fully determinate for a given problem.

NUMERICAL RESULTS AND DISCUSSION

The major computational effort in the numerical study is associated with the evaluation
of Green's functions Gee and Hee required to establish [K] given by eqn (30). These Green's
functions consisting of infinite integrals are computed using an appropriate numerical
integration scheme with due consideration given to the oscillating nature of the integrand.
The variation of non-dimensionalized torsional stiffness KT (KT = 3To/16Jloa 3¢o) for differ­
ent discretizations adopted for Sand S* and location of s* characterized by radius r* (Fig.
3) is presented in Table l. The convergence of solution is clearly evident and more complete
comparisons involving twist and torque transfer profiles along the bar length were also
made to confirm the convergence. These solutions are not presented for brevity. The

Table I. Variation of non-dimensionalized stiffness KT with dis­
cretizations adopted for Sand S*, hja = 10, P= 0.2, }' = 1.5,

Hja = 15.0, N = 8

ii = 50 ii 2000
(M, M*) r* = 0.85 r* = 0.90 r* = 0.85 r* = 0.9

(12, 8) 7.74 7.38 57.96 56.83
(18, 12) 8.07 7.87 60.89 60.33
(25,20) 8.47 8.43 62.78 63.10
(35,30) 8.48 8.45 63.27 63.54
(40,30) 8.50 8.49 63.26 63.70
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Fig. 4. Twist and torque profiles for elastic bar embedded in a medium where A.. = Ilo eP'; h/a = 10,
M = 30, M* = 20, ,. = 0.85, H/a = 20: (a) variation of twist and torque profiles with y; (b)

variation of twist and torque profiles with p.

convergence of the numerical solution with the total number of terms (N) used to represent
bar deformation field in eqn (l0) was also investigated and sufficient convergence was
observed for N ~ 6.

The influence of the layer thickness (H) on numerical solutions was investigated by
considering a rigid bar with h/a = 10. Note that the solution corresponding to the base of
a rigid bar represents the situation where the influence oflayer thickness is most significant.
Numerical solutions for base twist and base torque were found to change about 5 and 15%
when H/a is changed from 10.5 to 20.0, respectively. In general, for (H -h)/a > 2.0 the
thickness of the layer was found to have negligible influence. This is not surprising since
the classical Reissner-Sagoci problem indicates that stresses and displacements at depths
greater than twice the plate radius are quite negligible.

Figure 4(a) shows the influence of the transverse isotropy parameter y on the non­
dimensionalized twist angle cp(z) (cp(z) = ¢J(z)J1.oa 3/To) and bar torque T(z) along the length
of an elastic bar with ji = 200 (ji = J1.b/J1.0)' embedded in a non-homogeneous medium
represented by eqn (4b) with P= 0.1. Comparison of solutions corresponding to y = 1.0
(isotropic) with those corresponding to other y values shows the significance of transverse
isotropy in the torsion load transfer problem. The influence of the non-homogeneity par­
ameter p on the torque and twist profiles are presented in Fig. 4(b) for an elastic layer
which is isotropic (y = 1) and for a bar with ji = 500. The significance of non-homogeneity
is clearly evident on the twist angle but the torque transfer profiles show less dependence
on p. This behaviour could be interpreted from the shape of twist angle profiles since the
resultant torque at the bar cross-section is directly proportional to the slope of the twist
angle profile at a given depth.

The influence of non-homogeneity of the form A 44(Z) = J1.o(l +mz)" on the torsion
load-transfer problem is depicted in Fig. 5. The torque and twist angle profiles corresponding
to a bar with ji = 200 embedded in a surrounding medium which is isotropic and has
linearly increasing shear modulus with depth (ex = 1) is shown in Fig. 5(a) for different
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Fig. 5. Twist and torque profiles for elastic bar embedded in a medium where A 44 = lIo(l +mz)';
h/a = 10, M = 30, M* = 20, r* = 0.85, H/a = 20: (a) variation of twist and torque profiles with

parameter m; (b) variation of twist and torque profiles with ex.

<i (z) T(z)/To

101U..L.----.....

a

2

4

z/o
6

8

0.024

Ji. '50 - 0

=200 - +
=500 -.
=1000 - '"
=2000- x
=5000-v

Fig. 6. Twist and torque profiles for various values of bar flexibility ratio ji; h/a = 10, M = 30,
M* = 20, r* = 0.85, H/a = 20.

values of m. These results indicate that as the gradient m of the shear modulus variation
increases the system becomes stiffer and twist angle decreases sharply along the length. The
torque transfer profiles show more diffusion of torque in the central region of the bar with
increasing values of m. The significance of parameter ex which reflects the non-linearity of
shear moduli with depth is investigated in Fig. 5(b) for a bar with ii = 500 embedded in an
isotropic half-space with m = 0.2. The solution corresponding to a surrounding isotropic
(y = 1) and homogeneous medium (ex = 0) is also plotted in Fig. 5(b). The influence of
parameter rx on the twist profile is clearly evident and the behaviour of torque transfer
profiles is similar to that observed for variations of the non-homogeneity index Pin Fig.
4(b). The relative insignificance of ex on torque transfer profiles is evident since the slope of
twist angle profiles are nearly identical for different values of ex. However, in a separate
numerical study it was observed that as the bar becomes stiffer the torque transfer curves
show a more significant influence of parameter ex.

The significance of shear moduli ratio ii on the torsion load transfer problem is shown
in Fig. 6 for a bar with h/a = 10.0 embedded in an elastic medium where fJ = 0.1 and
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Table 2. Variation of normalized stiffness KT with bar flexibility, non-
homogeneity parameter fJ and transverse isotropy index y for a medium

with A 44 = Jlo eP'; h/a = 10, H/a = 20.0, M = 30, M* = 20, r* = 0.85

KT

fJ = 0.1 fJ = 0.2
Ii y = 0.5 y = 1.0 y = 1.5 y = 0.5 y = 1.0 y = 1.5

10 0.73 1.03 1.27 0.76 1.07 1.31
50 0.77 1.06 1.29 0.83 1.13 1.36

100 0.79 1.09 1.32 0.88 1.18 1.41
200 0.82 1.14 1.38 0.95 1.27 1.50
500 0.86 1.27 1.56 1.13 1.52 1.79

1000 0.88 1.41 1.78 1.30 1.84 2.21
2000 0.90 1.54 2.03 1.48 2.26 2.80

50,000 0.92 1.77 2.56 1.84 3.38 4.81
00 0.93 1.78 2.57 1.87 3.50 5.00

Table 3. Variation of normalized stiffness KT with bar flexibility, non-
homogeneity parameters m and 0( for a medium with A 44 = Jlo(l +mz)";

h/a = 10, H/a = 20.0, M = 30, M* = 20, r* = 0.85, y = 1.0

KT

0(= 1.0 m =0.2
Ii m=0.2 m=0.6 m=0.8 0( = 0.5 0( = 1.5 0( = 2.0

10 1.06 1.16 1.21 1.03 1.09 1.13
50 1.11 1.26 1.32 1.05 1.16 1.22

100 1.15 1.33 1.40 1.07 1.22 1.29
200 1.21 1.44 1.52 1.10 1.30 1.39
500 1.36 1.73 1.85 1.18 1.54 1.70

1000 1.53 2.11 2.30 1.25 1.83 2.10
2000 1.71 2.61 2.92 1.31 2.17 2.66

50,000 2.04 4.06 5.05 1.41 3.00 4.47
00 2.09 4.21 5.25 1.42 3.09 4.64

y = 1.5. Numerical results presented in Fig. 6 correspond to the range ji = 50-5000 reflecting
very flexible as well as nearly rigid bars. For flexible bars both twist and torque transfer
profiles show a sharp decrease with depth. On the other hand as the bar becomes stiffer the
twist angle approaches a constant value with depth and torque transfer profiles showing a
more gradual diffusion of torque to the surrounding medium with depth.

In engineering applications of the present class of problems the quantity of interest is
the torque-twist relationship KT at the top end of the bar. The normalized stiffness
KT = KT/Ko, where Ko is the KT corresponding to an identical bar embedded in a homo­
geneous isotropic medium, is used in the present study instead of KT to directly portray the
significance of non-homogeneity and transverse isotropy on the global response of the
system shown in Fig. 1. Solutions for Koare given in Karasudhi et al. (1984) and Selvadurai
and Rajapakse (1987). The variation ofKT with bar flexibility, non-homogeneity parameter
13 and transverse isotropy index y for a medium with A 44 = J-lo ePz is presented in Table 2.
Noting that y = 1.0 represents an isotropic solid it is evident from these results that the
transverse isotropy has a significant influence on the torsional stiffness for both very flexible
and rigid bars. The influence of 13 for a given value of y is relatively small for flexible bars
since the torque diffusion is more rapid and only the top portion of the bar near the surface
level is deformed. On the other hand as ji increases the entire length of the bar undergoes
deformations of the same order and torque transfer is more gradual and these characteristics
increase in stiffness considerably for increasing values of 13.

Table 3 presents the variation of KT for an elastic bar embedded in an isotropic medium
where non-homogeneity is represented by the form A 44(Z) = J-lo(l +mzt. The first set of
results (columns 2--4) correspond to a situation where shear modulus increases with depth
linearly and gradient m is varied from 0.2 to 0.8. The general behaviour is similar to that
observed in Table 2 for varying 13. Numerical solutions are also presented in Table 3 for
the case where m = 0.2 and r:L is varied from 0.5 to 2.0 to reflect a situation where the

SAS 24:2-C
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variation of shear moduli with depth is non-linear. The significance of IY. is clearly evident
except for very flexible bars and the general trend is an increase in KT with increasing IY..

It can be concluded that an accurate solution algorithm based on a classical variational
theorem and Green's functions for an undisturbed surrounding medium is presented to
analyse the torsion load transfer from a long cylindrical elastic bar to a non-homogeneous
transversely isotropic elastic layer. The analysis is based on a more realistic decomposition
of the load transfer problem and satisfies the displacement compatibility and traction
continuity on the true contact surface. The numerical study though not extensive reflects
the significance of non-homogeneity, transverse isotropy and bar flexibility on the twist
angle and torque transfer profiles along the bar length and on the torque-twist relationship
at the top end of the bar. It is noted that the depth of the elastic layer has a negligible
influence on the torsion load transfer problem if (H - h)ja > 1.0. The solution scheme
presented in this paper could be directly used to analyse torsion transfer problems involving
layered non-homogeneous media. In this case all Green's functions have to be constructed
numerically since an explicit derivation is extremely tedious and impractical.
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APPENDIX

The expression for the displacement Green's function G99 (r, z; s, z') is given below.
For a medium with A ••(z) = Jlo eP'

1'" (c e'2' - c e'I')
G99(r,z;s,z') = 1 1 Dl(~,z',H)G(s,r,~)d~ O,;;;z';;;z'

o Cl

= L'" (-e,IH(,,-,,)H+e'2')D2(~,z',H)G(s,r,~) d~ z'';;; z,;;; H

where

(AI)
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(A2)

(A3)

(A4)

For the case of a non-homogeneous transversely isotropic half-space the expression for Goir, z; s, z') is reduced
to the following form:

(AS)

z' ~ z < 00.

Note that c, and C2 appearing in the above equations are defined under eqn (6).
For a medium with A 44(Z) = Po(l +mz)"

Goo(r,z;s, z') = UPr[F(P-l,O)Ip(U~)+Kp(U~)]D,(~,z', H)~-IG(S, r,~) d~ 0 ~ z ~ z'

= UPr[-F(P,H)Ip(U~)+Kp(U~)]D2(~,z',H)~-'G(s,r,~)d~ z'~z~H

where

(A6)

U = (rii+Z)1"/2 (A7)

F(Jl,z) = Kp[(rii+z)~1'1/2]IIp[(rii+z)~1"/2] (A8)

,[F(P,H)-F(p,z')] I
DI(~' z ,H) = - A 44 (z')lp_ l[(rii+Z')~1'1/2]1"/2[(rii+ Z')yl/2jP [F(P, H) +F(p- I, O»)[F(P, z') +F(p- I,z')] (A9)

,[F(P,z')+F(p-I,O)] 1
D2(~'Z, H) = A44(Z')IP_I[(rii+z')~y'12Jyl/2[(rii+Z')y'l2jP [F(p,H)+F(p- I, O)][F(P,z')+F(p-I,z')j" (AW)

For the case of a non-homogeneous transversely isotropic half-space with A 44(Z) = Po(l +mz)" the above
expressions for Goo(r, z; s, z') reduces to the following form:

where

GII8(r,z;s,z') = UPr[F(P-l,O)Ip(U~)+Kp(UmD,(~,z')~-'G(s,r,~) d~ 0 ~ z ~ z'

= UP tOO Kp(U~)D2(~' z')~-' G(s, r,~) d~ z' ~ z < 00

(All)

,~~ I
DI(~'z) = A 44(z')lp_I[(rii+z'gl"/2]y1/2[(rii+z')yl/2jP F(p- I, O)[F(P- I, z')+F(p,z')] (A12)

, (F(P,z')+F(p-I,O)] I
D2(~'Z) = A 44(Z')lp_,[(rii+Z'gl'l/2]yl/2[(rii+Z')yl/2jP F(p- I,O)[F(P- I,z')+F(p,z')]" (A13)

Explicit representations for stress components (10, and (1,0 can be obtained from eqns (1) together with
Goo(r, z; s, z') as presented above. The traction Green's function Hoo(r, z; s, z') denoting traction in the 9-direction
acting on a plane with unit normal n through point (r, z) due to a unit ring load through (s, z') could be expressed
as

, aGoo (aGII8 GOO)Hoo(r,z;s,z)=P44-a;-n,+P66 --a,:---, n, (A14)

where n, and n, are the direction cosines of the plane under consideration with respect to the r- and z-axes,
respectively.


